Applications of Krull’s Principal Ideal Theorem

Likun Xie
April 3, 2020

This post is about some applications of Krull’s Principal Ideal Theorem and regular local rings in dimension theory and regularity of schemes [Part IV, Vakil], with the aim of connecting the 2018-2019 Warwick course MA4H8 Ring Theory with algebraic geometry. The lecture notes/algebraic references are here: 2018-2019 Ring Theory. Note that the algebraic results included here follow those in [Vakil, [1]] either as exercises or proved results for which I have included the references.

Besides including results in both their geometric and algebraic statements, I have given proofs to a selection of exercises in Part IV, [Vakil, [1]] to illustrate more applications and other connections to the contents in the Ring Theory courses. The indexes for exercises follow those in [Vakil, [1]].

1 Krull’s Principal Ideal Theorem

Krull’s Principal Ideal Theorem (algebraic version). [P.23, [2]] Let R be a Noetherian ring. Let $a \in R$ be a non unit, suppose that P is a prime ideal minimal over a. Then $\text{rk} \ P \leq 1$. If furthermore, a is not a zero divisor, then $\text{rk} \ P = 1$.

Krull’s Principal Ideal Theorem (geometric version). [P. 316, [1]] Suppose X is a locally Noetherian scheme, and f is a function. The irreducible components of $V(f)$ are codimension 0 or 1.

See [P.23, [2]] for the proofs.

The Generalised Principal Ideal Theorem. Let R be a commutative Noetherian Ring. Suppose that P is a prime ideal minimal over the elements $x_1, \ldots, x_r \in R$, then $\text{rk} \ P \leq r$.

Proof. We prove by induction. For $r = 1$, this is Krull’s Principal Ideal Theorem.

Assume the result is true for primes minimal over $\leq r-1$ elements. Suppose P is minimal over x_1, \ldots, x_r and suppose there exists a chain of primes $P = P_0 \supseteq P_1 \supseteq \cdots \supseteq P_{r+1}$. If $x_1 \in P_k$ then since P_0/x_1R is minimal over \bar{x}_2, \ldots, x_r in the ring R/x_1R we get a contradiction.

Let k be such that $x_1 \in P_k$ but $x_1 \notin P_{k+1}$. So we have $P_k \supseteq P_{k+2} + x_1R \supseteq P_{k+2}$ hence a chain $P_k/P_{k+2} \supseteq x_1 + P_{k+2} \supseteq P_{k+2}/P_{k+2}$. Since $P_k/P_{k+2} \supseteq P_{k+1}/P_{k+2} \supseteq P_{k+2}/P_{k+2}$, by Krull’s Principal Ideal Theorem, P_k/P_{k+2} cannot be minimal over $x_1 + P_{k+2}$. So there exists a prime ideal P'_{k+1} such that $P_k \supseteq P'_{k+1} \supseteq x_1 + P_{k+2} \supseteq P_{k+2}$. Proceeding this way, we can build a new chain $P = P_0 \supseteq P_1 \supseteq \cdots \supseteq P_k \supseteq P'_{k+1} \supseteq \cdots P'_{r} \supseteq P_{r+1}$ with $x_1 \in P'_{r}$ which leads to a contradiction as before.

Exercise 11.3.A Show that an irreducible homogeneous polynomial in $n+1$ variables over a field k describes an integral scheme of dimension $n - 1$.

Proof. Let $f(x_0, \ldots, x_n)$ be the homogeneous equation cut out the scheme in question. Note that it is covered by spec $k[x_0/i_0, \ldots, x_l/i_l, \ldots, x_n/i_n]/(f(x_0/i, \ldots, x_l/i_l, \ldots, x_n/i_n))$ and f is irreducible, then apply Krull’s Principal Ideal Theorem.

Exercise 11.3.B. [Lemma 4.38,[2]] Suppose (R, m) is a Noetherian local ring, and $f \in m$. Then $\dim R/(f) \geq \dim R - 1$.
Proof. Let \(n = \dim A \), then \(\text{rk} \, \mathfrak{m} = n \), so there exists a chain of primes \(\mathfrak{m} = P_0 \supseteq P_1 \supseteq \cdots \supseteq P_n \). As in the proof of the Generalised Principal Ideal Theorem, we can construct a new chain of primes \(\mathfrak{m} = Q_0 \supseteq Q_1 \supseteq \cdots \supseteq Q_{n-1} \) with \(f \in Q_{n-1} \). Hence, \(\text{rk}(\mathfrak{m}/(f)) \geq n - 1 \).

We can further more show that if \(f \) is regular (nonzerodivisor) then the equality holds. If \(\mathfrak{m}/cR = T_0/(f) \supseteq \cdots \supseteq T_k/(f) \) is a chain of primes in \(R/(f) \) then \(J = T_0 \supseteq T_1 \supseteq \cdots \supseteq T_k \) is a chain of primes in \(R \). Since \(f \) is regular, \(T_k \) is not a minimal prime of \(R \). Thus, the regular elements of \(R \) is the complement of the union of all minimal primes, see Proposition 4.18, \([2]\). So \(n = \text{rk} \, \mathfrak{m} = \text{rk} \, \mathfrak{m}/(f) + 1 \). Hence, \(\text{rk} \, \mathfrak{m}/(f) = n - 1 \). \qed

Important Exercise 11.3.C (a) (Hypersurfaces meet everything of dimension at least 1 in projective space, unlike in affine space.) Suppose \(X \) is a closed subset of \(\mathbb{P}^k_n \) of dimension at least 1, and \(H \) is a nonempty hypersurface in \(\mathbb{P}^k_n \). Show that \(H \) meets \(X \).

(b) Suppose \(X \hookrightarrow \mathbb{P}^k_n \) is a closed subset of dimension \(r \). Show that any codimension \(r \) linear space meets \(X \).

(c) Show further that there is an intersection of \(r + 1 \) nonempty hypersurfaces missing \(X \). If \(k \) is infinite, show that there is a codimension \(r + 1 \) linear subspace missing \(X \).

(d) If \(k \) is an infinite field, show that there is an intersection of \(r \) hyperplanes meeting \(X \) in a finite number of points.

Proof. (a) Consider the affine cone \(CX \subseteq A^{n+1}_k \) over \(X \). Let \(\dim X = n \), then \(\dim CX = n + 1 \), by Krull’s Principal Ideal Theorem, \(\dim CX \cap V(f) \geq n + 1 - 1 = n \geq 1 \). Note that \(\dim CX \cap V(f) \) contains the origin. Since it has dimension \(\geq 1 \), it also contains another point in \(A^{n+1}_k \setminus \{0\} \hookrightarrow \mathbb{P}^n_k \).

(b) Similar to (a), note that \(\dim CX \cap V(f_1, \ldots, f_n) \geq \dim X + 1 - r \geq 1 \).

(c) The key step: show that there is a hypersurface of sufficiently high degree that doesn’t contain any generic point of \(X \). Show this by induction on the number of generic points. To get from \(m \) to \(m + 1 \): take a hypersurface not vanishing on \(p_1, \ldots, p_m \). If it doesn’t vanish on \(p_{m+1} \), we are done. Otherwise, call this hypersurface \(f_{m+1} \). Do something similar with \(m + 1 \) replaced by \(i \) for each \(1 \leq i \leq m \). Then consider \(\Sigma_i f_1 \cdots f_{i} \cdots f_{m+1} \), this hypersurface doesn’t vanish at any \(p_m \).

Let \(X_{-1} = X \) and \(g_{-1} = 0 \), take \(g_i \) to be a hypersurface that doesn’t contain any generic point of \(X_i = X_{i-1} \cap V(g_{i-1}) \). Then by Krull’s principal Ideal Theorem, \(\dim X_i = \dim X_{i-1} - 1 \). So we have \(\dim X_{r+1} = \dim X - (r + 1) = -1 \), thus the intersection of the \(r + 1 \) hypersurfaces \(g_i \) and \(X \) is empty.

If \(k \) is finite, we can choose a closed point \([a_0 : \ldots : a_n] \) for each irreducible component and choose a homogeneous linear form that does not vanish at any of these points.

(d) As in (c), we can take \(r \) linear forms \(g_i \) such that \(\dim X_i = 0 \) which means the intersection of \(X \) with the \(r \) hyperplanes consists of finitely many points. Note that a Noetherian ring with dimension 0 has only finitely many primes. \qed

2 Regularity and Smoothness

2.1 Regular Local Ring

\([4.7, \[2]\] \) Let \(R \) be a Noetherian local ring with Jacobson radical \((\text{the maximal ideal}) \) \(J \). We have \(V(R) := \dim J/J^2 \) as a vector space over the field \(R/J \). So \(V(R) = \) the number of elements in a minimal generator set for \(J \). By the Generalised Principal Ideal Theorem, we have \(\text{rk} \, J \leq V(R) \) [also see Theorem 12.2.1, \([1]\)].
(Fact(Cor 2.23,[2]): x_1, \ldots, x_k is a minimal generating set for $J \iff \bar{x}_1 \ldots \bar{x}_k$ is a basis for the vector space J/J^2 over R/J.)

Definition 2.1. A Noetherian local ring is called a regular local ring if $\text{rk } J = V(R)$.

Important Exercise 12.1.B. [Krull’s Principal Ideal Theorem for Tangent Spaces]. Suppose A is a ring, and m a maximal ideal. If $f \in m$, show that the Zariski tangent space of $A/(f)$ is cut out in the Zariski tangent space of A by $f(\mod m^2)$. Hence the dimension of the Zariski tangent space of $\text{Spec } A/(f)$ at $[m]$ is the dimension of the Zariski tangent space of $\text{Spec } A$ at $[m]$, or one less.

Note that localization and quotient commutes, we can translate the above into the following algebraic statement.

Algebraic translation[Lemma 4.40, [2]]. Let R be a Noetherian local ring with Jacobson radical J (R not a field). Suppose that $x \in J \setminus J^2$, let $R^* = R/xR$. Then $V(R^*) = V(R) - 1$. (If $x \in J^2$, then $V(R^*) = V(R)$.)

Proof. Note that R^* is a Noetherian local ring with Jacobson radical $J^* = J/xR$. Let y_1^*, \ldots, y_k^* be a minimal generating set for J^*. Choose $y_1, \ldots, y_k \in J$ such that $y_i \mapsto y_i^*$ under the natural homomorphism $R \to R/xR$. Claim x, y_1, \ldots, y_k is a minimal generating set for J which is equivalent to that $\bar{x}, \bar{y}_1, \ldots, \bar{y}_k$ is a basis for the vector space J/J^2 over R/J. We shall now show that $\bar{x}, \bar{y}_1, \ldots, \bar{y}_k$ in the vector space J/J^2 are linearly independent.

Suppose that $xr + y_1r_1 + \cdots + y_kr_k \in J^2$. So $y_1^*r_1^* + \cdots + y_k^*r_k^* \in (J^*)^2$ where r_i^* are the homomorphic images of r_i under $R \to R/xR$. Since y_1^*, \ldots, y_k^* is a minimal generating set for J^*, $\bar{y}_1^*, \ldots, \bar{y}_k^*$ is a basis for the vector space $J^*/(J^*)^2$ over R/J^*. It follows that $r_i^* \in J^*$, so $r_i \in J$. Then $xr \in J^2$. If $r \notin J$ then r is a unit, it follows that $x \in J^2$, a contradiction. Thus $r \in J$. This proves the claim. (If $x \in J^2$, from the above we can easily see that the claim becomes that $\bar{y}_1, \ldots, \bar{y}_k$ is a basis for the vector space J/J^2.)

We now look at some applications of this results:

Exercise 12.1.D Show that $(x, z) \subset k[w, x, y, z]/(wz - xy)$ is a codimension 1 ideal that is not principal, using the method of Solution 12.1.4. (See Figure 12.2 for the projectivization of this situation — a line on a smooth quadric surface.)

![Figure 12.2. The line $V(x, z)$ on the smooth quadric surface $V(wz - xy) \subset \mathbb{P}^3$.](image-url)
Proof. Let \(A = k[w, x, y, z]/(wz - xy) \), then \(\dim A = 3 \) by Krull’s Principal Ideal Theorem. As \(A/(x, y) \cong k[w, y] \), \(\dim A/(x, y) = 2 \), so \((x, z) \) has codimension 1. And \(\text{Spec } A/(x, y) \) has Zariski tangent space of dimension 2 at the origin. But \(\text{Spec } A/(f) \) must have Zariski tangent space of dimension at least 3 by Exercise 12.1.B.

Exercise 12.1.E Let \(A = k[w, x, y, z]/(wz - xy) \). Show that \(\text{Spec } A \) is not factorial.

Proof. This follows from Exercise 12.1.D and that all codimension 1 prime ideal in a unique factorisation domain is principal (Lemma 11.1.6, [I]).

Remark. A related algebraic result is Proposition 7.5, [2]: Let \(R \) be a commutative Noetherian integral domain. Then \(R \) is a UFD if and only if every rank 1 prime ideal of \(R \) is principal.

Remark (Vakil). As \(A \) is integrally closed if \(\text{char } k \neq 2 \) (Exercise 5.4.I(c), [I]), this yields an example of a scheme that is normal but not factorial.

Exercise 12.2.B Suppose \(X \) is a finite type \(k \)-scheme (such as a variety) of pure dimension \(n \), and \(p \) is a nonsingular closed point of \(X \), so \(\mathcal{O}_{X, p} \) is a regular local ring of dimension \(n \). Suppose \(f \in \mathcal{O}_{X, p} \). Show that \(\mathcal{O}_{X, p}/(f) \) is a regular local ring of dimension \(n - 1 \) if and only if \(f \in \mathfrak{m} \setminus \mathfrak{m}^2 \).

Proof. In the algebraic translation of Important Exercise [12.1.B] we have that \(V(R^*) = V(R) - 1 \) if \(x \in J \setminus J^2 \); and \(V(R^*) = V(R) \) if \(x \in J^2 \). Now we continue this algebraic statement, we show that for \(x \in J/J^2 \),

\[
V(R) - 1 = V(R^*) \geq \text{rk } J^* \geq \text{rk } J - 1 \quad \text{(by Exercise 11.3.B)} = V(R) - 1.
\]

So \(V(R^*) = \text{rk } J^* \) and \(R^* \) is regular local.

If \(x \in J^2 \), in the case of the exercise 12.2.B (\(X \) is a finite type \(k \)-scheme), \(x \) is not a zero divisor, so we still have \(\text{rk } J^* = \text{rk } J - 1 \). Since \(V(R) = V(R^*) = \text{rk } J \), we see that in this case \(R^* \) is not regular local. This proves the exercise.

Recall the definition of Cartier divisor [8.4.1,I]: If \(X \to Y \) is a closed embedding, and there is a cover of \(Y \) by affine open subsets \(\text{Spec } A_i \subset Y \), and there exist non-zerodivisors \(t_i \in A_i \) with \(V(t_i) = X_i|_{\text{Spec } A_i} \) (scheme-theoretically—i.e., the ideal sheaf of \(X \) over \(\text{Spec } A_i \) is generated by \(t_i \)), then we say that \(X \) is an effective Cartier divisor on \(Y \).

Exercise 12.2.C [The Slicing Criterion for Regularity] Suppose \(X \) is a finite type \(k \)-scheme (such as a variety), \(D \) is an effective Cartier divisor on \(X \) (Definition 8.4.1), and \(p \in D \). Show that if \(p \) is a regular point of \(D \) then \(p \) is a regular point of \(X \).

Proof. The algebraic translation is that if \(R/(f) \) is regular local for \(f \) regular (a nonzerodivisor), then \(R \) is also regular local. We proceed with a similar argument as the last exercise.

\[
V(R) - 1 \leq V(R^*) \quad \text{(by Important Ex 12.1.B)} = \text{rk } J^* = \text{rk } J - 1 \leq V(R) - 1.
\]

So \(\text{rk } J = V(R) \) and \(R \) is regular.
2.2 Regular local rings are integral domains

Proposition 2.1 (Lemma 4.19, [2]). Let \(R \) be a commutative ring. Let \(P_1, \ldots, P_n \) be ideals of \(R \), at least \(n - 2 \) of which are prime. Let \(S \) be a subring of \(R \). Suppose that \(S \subseteq \bigcap_{i=1}^n P_i \), then \(S \subseteq P_k \) for some \(k, 1 \leq k \leq n \). (Note that \(S \) does not necessarily contain 1 since we do not assume \(R \) is unital.)

Proof. Prove by induction on \(n \). For \(n = 1 \), the result is trivial. For \(n = 2 \) if \(S \not\subseteq P_1 \) and \(S \not\subseteq P_2 \) then choose \(x_1, x_2 \in S \) such that \(x_1 \not\in P_2 \) and \(x_2 \not\in P_1 \). Then \(x_1 + x_2 \not\in P_i, i = 1, 2 \).

Now assume \(n > 2 \) and that the result holds for values \(< n \). Clearly any selection of \(n - 1 \) of the \(P_i \) at most 2 will be non-prime. Suppose that \(S \subseteq \bigcap_{i=1}^n P_i \) but \(S \not\subseteq P_i \) for any \(1 \leq i \leq n \). Then \(S \not\subseteq \bigcap_{i=1,i\neq k} P_i \). Thus \(x_k \in P_k \). Since \(n > 2 \), at least one of the \(P_i \) must be prime, say \(P_1 \). Let \(y = x_1 + x_2 \cdots x_n \), then \(y \not\in P_i \) for any \(1 \leq i \leq n \), a contradiction. This completes the induction. \(\square \)

Corollary 2.1 (Prime Avoidance, Prop 11.2.13, [1]). Suppose \(p_1, \ldots, p_n \) are prime ideals of a ring \(A \), and \(I \) is another ideal of \(A \) not contained in any \(p_i \). Then \(I \) is not contained in \(\cap p_i \); there is an element \(f \in I \) not in any of the \(p_i \). \(\square \)

Lemma 2.1 (Lemma 4.42, [2]). Let \(R \) be a Noetherian local ring which is not an integral domain. Let \(P = pR(p \in P) \) be a prime ideal. Then \(\text{rk} P = 0 \).

Proof. Suppose that \(Q \subseteq P \) where \(Q \) is a prime ideal, then \(p \notin Q \). Now \(q \in Q \) implies \(q = pt \) for some \(t \in R \). Hence \(pt \in Q \Rightarrow t \in Q \) since \(p \notin Q \). So \(q \in pQ \subseteq P^2 \subseteq p^2R \). Preceding this way we have \(Q \subseteq P^n \) for all \(n \geq 1 \), so \(Q \subseteq \bigcap_{n=1}^\infty P^n \subseteq \bigcap_{n=1}^\infty J^n \) where \(J \) is the Jacobson radical of \(R \). But by Theorem 4.9, [2] \(\bigcap_{n=1}^\infty J^n = 0 \), so \(Q = 0 \) which is a contradiction since \(R \) is not a domain. Hence \(\text{rk} P = 0 \). \(\square \)

Theorem 2.1 (Theorem 4.43, [2]/Theorem 12.1.13, [1]). A regular local ring is an integral domain.

Proof. By induction on \(\text{dim} R = \text{rk} J \). If \(\text{rk} J = 0 \) then \(R \) must be a field.

Suppose now that \(\text{rk} J = n > 0 \) and assume result for rings of \(\text{dim} < n \). Since \(V(R) = \dim J/J^2 = \text{rk} J \neq 0, J \neq J^2 \). Choose \(x \in J \setminus J^2 \). By Exercise 12.2.B or Theorem 4.41, [2], \(R^x = R/xR \) is regular local. Also \(\text{dim} R^x = \text{dim} R - 1 \). By induction hypothesis, \(R^x \) is an integral domain, that is \(xR \) is a prime ideal. Suppose that \(R \) is not an integral domain, then by Lemma 2.1 \(xR \) is a minimal prime. Let \(P_1, \ldots, P_k \) be the minimal primes of \(R \), then \(x \in P_1 \cap \cdots \cap P_k \), thus \(J \setminus J^2 \subseteq P_1 \cap \cdots \cap P_k \). \(J \subseteq J^2 \cap P_1 \cap \cdots \cap P_k \). So \(J \subseteq P_j \) for some \(j \) by Proposition 2.1, hence \(J = P_j \). So \(\text{rk} J = 0 \) which is a contradiction. So \(R \) is an integral domain.

Now we look at some consequences of this theorem.

Exercise 12.2.J Suppose \(p \) is a regular point of a Noetherian scheme \(X \). Show that only one irreducible component of \(X \) passes through \(p \).

Proof. Since the minimal primes of the local ring \(\mathcal{O}_{X,p} \) correspond to the irreducible components passing through \(p \). As \(\mathcal{O}_{X,p} \) is an integral domain by Theorem 2.1, there is only one irreducible component passing through \(p \). \(\square \)
Easy Exercise 12.2.K Show that a nonempty regular Noetherian scheme is irreducible if and only if it is connected.

Proof. This follows from previous exercise and note that every connected component of a topological space X is the union of irreducible components.

Important Exercise 12.2.K (Regular Schemes in Regular Schemes are Regular Embeddings).

(a) Suppose (A, \mathfrak{m}, k) is a regular local ring of dimension n, and $I \subset A$ is an ideal of A cutting out a regular local ring of dimension d. Let $r = n - d$. Show that $\text{Spec } A/I$ is a regular embedding in $\text{Spec } A$. Hint: show that there are elements f_1, \ldots, f_r of I spanning the k-vector space $I/(I \cap \mathfrak{m}^2)$. Show that the quotient of A by both (f_1, \ldots, f_r) and I yields dimension d regular local rings. Show that a surjection of integral domains of the same dimension must be an isomorphism.

(b) Suppose $\pi : X \to Y$ is a closed embedding of regular schemes. Show that π is a regular embedding.

Proof. Since A/I is regular local with maximal ideal \mathfrak{m}/I, we have that $\dim(\mathfrak{m}/I)/(\mathfrak{m}/I)^2 = r$. Since $(\mathfrak{m}/I)/(\mathfrak{m}/I)^2 \cong I/(I \cap \mathfrak{m}^2)$, there are $f_1, \ldots, f_r \in I$ as a basis for the k-vector space $I/(I \cap \mathfrak{m}^2)$. Note that $R/(f_1, \ldots, f_r)$ is a regular local ring of dimension d and f_1, \ldots, f_r is a regular sequence. To see this, note that since f_1 is not a zerodivisor of R (R is an integral domain), $R/(f_1, \ldots, f_r)$ is regular local of dimension $n - 1$ and proceed with the same argument. Then we have a surjection of regular local rings of the same dimension $R/(f_1, \ldots, f_r) \to R/I$ which must be an isomorphism. (If not, then the kernel is nontrivial, then we would have $\dim R/(f_1, \ldots, f_r) \geq \dim R/I + 1$ since the trivial contain the zero ideal which is prime in a domain.) Thus we have shown (a) that $\text{Spec } A/I$ is regular embedding. (b) follows from (a) as we have shown it locally.

References
