Two examples of (co)limits as (co)equalisers

Likun Xie
June 20, 2020

This page is from the post Calculate (co)limits as (co)equalisers (two examples).

1. The connected component of a simplicial set

Let S_\bullet be a simplicial set. Then the component map $u : S_\bullet \to \pi_0(S_\bullet)$ [Tag 00GP] exhibits $\pi_0(S_\bullet)$ as the colimit of the diagram $\Delta^{op} \to \text{Set}$ determined by S_\bullet [Tag 00GR].

Proposition 1.1.6.22 [Tag 00GT] The component map $u : S_\bullet \to \pi_0(S_\bullet)$ [Tag 00GP] exhibits $\pi_0(S_\bullet)$ as the coequalizer of the face maps $d_0, d_1 : S_1 \to S_0$.

Proof. Clearly, there is a unique map $f_1 : \text{coeq}(S_1 \to S_0) \to \lim S_\bullet$ since the limit equalises the two face maps.

For any $\sigma : S_0 \to C$ that coequalises d_0 and d_1, we can form a cone from S_\bullet to C by defining the map $S_k \to C$ to be σd_k^0 as follow:

$\begin{align*}
S_2 & \xrightarrow{d_0} S_1 \xrightarrow{d_0} S_0 \\
\cdots & \downarrow \sigma d_0 d_0 \downarrow \sigma d_0 \downarrow \sigma \\
C & \xrightarrow{\sigma} C \\
\end{align*}$

To show that this is a cone, we apply the simplicial identities [see Tag 000G]. Since every $S_k \to S_j$ can be decomposed into d_i and s_i, it suffices to show the commutativity of d_i’s and s_i’s. We finish the proof by noting the following identities obtained by repeatedly applying the simplicial identities:

\begin{align*}
\sigma d_k^i d_i &= \sigma d_0^{k-1} d_{i-1} d_0 = \cdots = \sigma d_0^{k+1} & (1) \\
\sigma d_k^i s_i &= \sigma d_0^{k-1} s_{i-1} d_0 = \cdots = \sigma d_0 s_0 d_0^{k-1} = \sigma d_0^{k-1} & (2)
\end{align*}

for $i > 0$ (the case $i = 0$ is immediate). Since it forms a cone, by universal property there is a unique map $f_2 : \lim S_\bullet \to \text{coeq}(S_1 \to S_0)$ whose compositions with f_1 on both sides are the identities. \qed

Proof from Tag 00GV (Supplemented details). The idea is to use the bijection

$\text{Hom}_{\text{Set}}(\pi_0(S_\bullet), J) \to \text{Hom}_{\Delta}(S_\bullet, I_\bullet)$

for the adjunction pair: the connected component functor π_0 and the constant simplicial set functor. But the rest of details I fill in here still uses the simplicial identities.

To show a map $S_0 \to I$ factorises uniquely as

$\begin{align*}
S_0 & \xrightarrow{u_0} \pi_0(S_\bullet) \to I \\
\end{align*}$

is to show that $S_0 \to I$ factorises uniquely as

$\begin{align*}
\overline{S}_0 & \to \overline{I} \\
\end{align*}$

by adjunction correspondence.
This is equivalent to the assertion that there is a unique map of simplicial sets \(F : S_\bullet \to I_\bullet \) which coincides with \(f \) on simplicies of degree zero. Let \(\sigma \) be an \(n \)-simplex of \(S_\bullet \) identified as a map of simplicial sets \(\sigma : \Delta^n \to S_\bullet \). Consider the image \(\sigma([0] \to [n]) \) in \(S_0 \) where \(i \) is the map with \(i(0) = i \). Note that \(i \) factorises as \(i = d^n d^{n-1} \ldots d^i \ldots d^0 \) and we want to show that \(f \sigma(i) = f \sigma(j) \) for all \(0 \leq i \leq j \leq n \) so that we can define the desired unique map \(F : S_\bullet \to I_\bullet \) as \(F(\sigma) = f(\sigma(i)) \).

The identity \(f \sigma(i) = f \sigma(j) \) follows from the commutativity of the cone we showed in my last proof. Or we can proceed directly as follow:

\[
\begin{align*}
 f \sigma(i) &= f d_0 d_1 \ldots d_i \ldots d_n = f d_0 d_0 d_i+1 \ldots d_n = f d_0 d_0 d_1 d_2 \ldots d_n. \\
 &= f d_0 d_0 d_i+1 \ldots d_n \\
 &= \cdots = f d_0
\end{align*}
\]

Note that line (3) is by repeatedly applying the simplicial identity \(d_i d_j = d_j - 1 d_i \) for \(0 \leq i < j \leq n \) and (4) is by the condition \(f d_0 = f d_1 \).

2. The sheaf condition

Recall that a Grothendieck topology on a category \(C \) assigns each object \(c \in C \) a collection of sieves \(\text{Cov}(c) \) satisfying some axioms.

In my post Categorical descriptions for glueing sheaves and schemes, I mentioned in the proof of Lemma 6.33.2 that for an open \(V \subset X \) and a covering sieve \(J_V \in \text{Cov}(V) \), the sheaf condition for a sheaf \(\mathcal{F} \) is just the limit over \(J_V \):

\[
\mathcal{F}(V) = \lim_{\leftarrow (V_i \to V) \in J_V} \mathcal{F}(V_i).
\]

This is the same as the equaliser usually presented in the sheaf condition:

\[
\mathcal{F}(V) \text{ is the equaliser of } \prod_{W_i \in J_V} \mathcal{F}(W_i) \Rightarrow \prod_{W_i, W_j \in J_V} \mathcal{F}(W_i \times_V M_j)
\]

for a covering sieve \(J_V \).

Proof. First there is a unique map from \(\lim_{J_V} \mathcal{F}(V_i) \) to the coequaliser of (6) since the coequaliser diagram is part of the limit diagram.

Now we show that the map \(\text{coeq}(6) \to \mathcal{F}(W_i) \) given by the product map forms a cone hence there is also a unique map from \(\text{coeq}(6) \to \lim_{J_V} \mathcal{F}V_i \) whose compositions with the map above on both sides give the identities.

To show that it forms a cone, for any \(f : W \to W' \) in \(J_V \), there is a unique map \(g : W \to W \times_V W' \) by the universal property as follow:

\[
\begin{array}{ccc}
 W & \xrightarrow{g} & W' \\
 \downarrow{id} & & \downarrow{h} \\
 W \times_V W' & \xrightarrow{f} & W' \\
 \downarrow{h} & & \downarrow{h} \\
 W & \xrightarrow{g(id)} & V
\end{array}
\]
This gives the following commutative diagram and the commutativity condition for the cone follows from the outer square.